

Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-152231

Domain Decomposition
and Load Balancing in the
AMTRAN Neutron
Transport Code

John C. Compton and Christopher J. Clouse

This article was submitted to
15th International Domain Decomposition Conference
Berlin, Germany
July 21-25, 2003

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

DOMAIN DECOMPOSITION AND LOAD BALANCING

IN THE AMTRAN NEUTRON TRANSPORT CODE

John Compton and Christopher Clouse
Lawrence Livermore National Laboratory

7000 East Avenue, Livermore, California, U.S.A.

Abstract. Effective spatial domain decomposition for discrete ordinate (Sn) neutron transport
calculations has been critical for exploiting massively parallel architectures typified by the ASCI
White computer at Lawrence Livermore National Laboratory. A combination of geometrical and
computational constraints has posed a unique challenge as problems have been scaled up to several
thousand processors. Carefully scripted decomposition and corresponding execution algorithms
have been developed to handle a range of geometrical and hardware configurations.

1. Introduction

The AMTRAN code has been in development at Lawrence Livermore National
Laboratory since 1995 to solve two- and three-dimensional deterministic neutron
transport problems on a range of platforms from serial to massively parallel. When the
White computer was delivered to Livermore several years ago as part of the U.S.
Department of Energy’s Advanced Simulation and Computing Program [1], there was a
concerted effort to adapt various physics codes to exploit its thousands of parallel
processors and its threaded, message-passing software environment [2]. AMTRAN, in
particular, has been able to exploit parallelism in several ways, but spatial domain
decomposition has been the most challenging of these, and ultimately the key to the
successful and efficient scaling of problems up to thousands of processors.

At the time it began development in 1995, AMTRAN was unique in its application of
adaptive mesh refinement technology (AMR) to the solution of the neutron transport
equation, although other efforts began appearing in conference proceedings shortly
thereafter [3][4]. Two basic methodologies have developed concerning the type of AMR
used: zone-based (or tree-based) AMR and block-based (or patch-based) AMR [5]. In
zone-based AMR, refinement can occur zone by zone, giving greater flexibility in
capturing interfaces and gradients with finer zoning, but it does not lend itself to large
scale spatial parallelism and can be less cache friendly because of the irregular data
layout (see [6]). AMTRAN uses a block based AMR, which can result in more total
zones than a zone based AMR scheme, but is better suited for large-scale parallelism.
AMTRAN blocks are rectangles in 2D, or hexahedral boxes in 3D. Zoning changes are
confined to the interfaces between blocks; thus, the zoning within a block is uniform and
can be very computationally efficient. Examples of some zoning rules for AMTRAN are
illustrated in Figs. 1 and 2. Despite the block AMR structure of AMTRAN, though, the
downwind dependency of the Sn directional sweeps still presents a significant challenge
in obtaining good spatial parallel efficiency.

 2

 Block boundary

 Figure 1. Block boundaries must line Figure 2. Zoning changes can be
 up on coarsest grid lines 1→2n , where n is arbitrary

Here we will touch only superficially on those aspects of deterministic neutron transport
which have an impact on considerations of computational parallelism and spatial domain
decomposition. AMTRAN solves the time-independent transport equation (Eq.1 below),
where m

gΨ is the angular flux for energy group g, and angle m.

)(ψσ Sm
gtot

m
g =Ψ+Ψ∇•Ω

��

 (1)

The total cross section is represented by totσ , and)(ψS is the source term representing

contributions from other angles and energy groups through scattering as well as fission
sources.)(ψS is typically only a function of the scalar flux, defined as a weighted sum of
the angular fluxes, and its moments. The transport problem is computed on a Cartesian
finite-element grid. It consists of one or more uniform blocks. The zoning in each block
is determined by the properties of the physical system being modeled (in particular, to an
approximation of the local mean free path of the neutrons through the medium). The
neutron transport equations are then solved iteratively until the degree of convergence
specified by the user is reached. That is the broadest explanation possible to describe the
essence of the method. Two immediate sources of parallelism lie in the fact that (1) the
time-independent transport equation (Eq. 1) is solved using a set of coupled single-energy
group transport equations, each of which can be solved in parallel, subject to
synchronization points where the coupling terms are calculated, and (2) that the transport
equation is further discretized into angles, each of which may likewise be computed
independently. In our implementation the energy groups (typically 6 to 48) are
distributed among the processors, and the angles are distributed among the threads (each
of which is here supported by a separate processor sharing a common memory space).
These two strategies permit a degree of parallelism equal to the number of energy groups
multiplied by the number of computational threads. For practical reasons, threading is
limited to the number of angles per octant, or quadrant in 2D (typically 3 to 16), and also
by the hardware (typically 2 to 16 processors on a shared memory node). Any further
parallelism to be achieved beyond this point requires spatial domain decomposition, and
that leads us into the heart of our discussion.

As is typically done in cases of domain decomposition, computation proceeds in parallel
for each region while being punctuated by occasional exchanges of information among
the processors. In AMTRAN’s case, each iteration consists of sub-iterations separated by
a computational barrier and exchange of messages among the processors. Exchange is

 3

necessary only between pairs of processors which share a common border corresponding
to the physical space being modeled. In particular, the messages consist of information
describing the physical variables being computed in each region. Since the calculation is
relatively static from one iteration to the next, the size and content of the messages is
predetermined by the spatial domain decomposition performed initially. However, as we
shall see, we may permit the domain boundaries to shift dynamically between iterations if
load imbalances are detected during the computation.

2. Basic Definitions

At this point we need to introduce some definitions that will be used throughout the
remainder of the discussion. We have already used the term “domain” in the preceding
paragraphs. To be more precise, a domain consists of one or more contiguous blocks or
grids which fill a space corresponding to a rectangle (in two dimensions) or hexahedral
box (in three dimensions), that is, a subset of the original problem space. In Fig. 3 we
have a very simplistic example of four domains, where solid lines denote domain
boundaries, thick dashed lines denote grid boundaries within domains, and thin dashed
lines separate individual zones within a grid. In this example domain 1 contains the single
grid A, domain 2 contains grid B, domain 3 contains the three grids C, D and E, and
domain 4 contains grids F and G. (Typically grids contain hundreds or thousands of
zones.)

 A B

 C D F G

 E

 Figure 3. Example of four domains with seven grids

In our terminology a “domain master” is a collection of one or more domains that are
assigned to a given processor. In addition, if a master contains more than one domain,
then we speak of this as an example of “domain overloading.” These domains may or
may not be contiguous, so that a domain master may represent space physically
distributed throughout the problem (namely, as a collection of rectangles or hexahedral
boxes). Thus domains are individually physically coherent (in terms of the object being
modeled), whereas master domains are logically coherent. The only physical coherence
that the latter need possess is the fact that they reside in adjacent computer memory.

←2
(B)

←4
(F,G)

1→
(A)

3→
(C,D,E)

 4

Returning to the example of Fig. 3, we could place domains 1 and 4 under a single
master, and leave domains 2 and 3 each under a separate master.

Note again that a domain corresponds purely to a single physical space. This means that
even though each domain is replicated across multiple processors (each corresponding to
one or more separate energy groups), it is never split between processors. In summary,
sets of processors are partitioned among domain masters and, within a domain master set,
processors are partitioned by energy group. Each member of the set models the same
physical space and therefore behaves quite similarly in terms of the computations it
performs and the structure of the messages it sends and receives. The term “master”
arises from the fact that one designated processor performs certain collection and
messaging functions both within the set (such as with all-reduce functions) and then later
with the other sets. We can use the example in Fig. 3 to illustrate how domains, grids, and
energy groups could be allocated among processors. Let us say that there are four energy
groups (a)-(d), with two each assigned to a processor. Table 1 gives the assignments
assuming, as we did above, that domains 1 and 4 belong to a single master.

Processor Master Domains Grids Energy
groups

1 1,4 A,F,G a,b
2

1
1,4 A,F,G c,d

3 2 B a,b
4

2
2 B c,d

5 3 C,D,E a,b
6

3
3 C,D,E c,d

Table 1. Example of domain-to-processor assignment

A final bit of terminology is crucial to our discussion and needs special attention. This
concerns the discretized angles mentioned above and the order of computations. Eq. 1 is
solved through “source iteration” in which the RHS source term is evaluated using “old”
values of the fluxes; usually those from the previous iteration. The streaming term on the
LHS is then solved by sweeping through the mesh in the direction of neutron flow, given
by the direction of angle m. In two dimensions the sweep angles can be assigned to one
of four groups based upon the direction of the sweep from one of the four corners of the
problem to the corresponding opposite corner (that is, lower left to upper right, lower
right to upper left, upper left to lower right, or upper right to lower left). Each one of
these sweeps is independent of the others and so they can be done in parallel. However,
within a single sweep, all the grids must be swept with certain dependency rules that
govern the sequence of processing of grids in going from the grid at one corner and
ending with the grid in the opposite corner. We will use the sweep direction from lower
left to upper right to illustrate the order of computation between these two extremes. The
basic rule is that each boundary on the bottom or left of a domain must either be an
exterior boundary, or else be adjacent only to domains that have already been swept. All
four sets of sweep dependencies corresponding to the example of Fig. 3 are given in Fig.

 5

4. It should be noted from the diagrams that dependencies for sweeps (a) and (d), which
proceed in opposite directions, are in fact inverses of one another, which can be seen by
reversing the direction of the arrows. The same holds for cases (b) and (c) and illustrates
that dependencies for sweeps in opposite directions are always inverses of one another.

 A B
 B A
 G
 C F
 D D
 E E
 F G C

 (a) upper left to lower right (b) upper right to lower left

 B A
 G B
 A
 F C
 D D
 E E
 C F G
 (c) lower left to upper right (d) lower right to upper left

 Figure 4. Example of sweep dependencies for seven grids in four domains

In three dimensions we have the analogous situation with regard to sweeps, except that
all angles fall into one of eight octants to begin their sweep, starting from the outermost
corner of the octant and ending in the opposite corner of the problem. Now in order for a
domain to be swept (i.e., the upwind sides) it must have the three sides facing the sweep
corner either lying on one of the external boundary planes of the problem or else adjacent
only to domains previously swept from the same direction. Examples below will illustrate
these dependency rules.

3. Motivation by Example for the Decomposition Method

We now turn to the problem of how sweeps are actually performed on each processor
once we have partitioned the problem among domains, assigned these to masters, and
performed adaptive mesh refinement to generate the grids on which the computation will
be performed. This will illustrate how critically the computational process depends on
both the initial partitioning of the problem, and on how we choose among the various
possible ways of scheduling the potentially parallel subtasks assigned to a given
processor. Later we will give solutions that address all these concerns.

Let us use our previous example from Fig. 3, but unlike the case of Table 1, each domain
will have a separate master, so that there will be eight processors in total instead of six.
(This assignment to masters has no effect on the dependency diagrams of Fig. 4.) We will
also assume that the total work to be performed in each domain is equal, that is, that they

 6

are perfectly load balanced in terms the amount of computation which they must perform.
A simple strategy is for each processor to perform all sweeps possible for a given sub-
iteration, then exchange messages as necessary, and proceed to the next sub-iteration
until all sweeps have been performed in all directions on all processors. (Recall that
messaging must occur in order to pass information across grid boundaries.)

Referring to the dependency diagrams of Fig. 4, we see that on the first sub-iteration grid
A can be swept in domain 1 from the upper left, grid B in domain 2 from the upper right,
grids C, then E, then D in domain 3 from the lower left, and finally grids G and then F in
domain 4 from the lower right. At this point nothing else can be done until the processors
have exchanged messages. The second sub-iteration is not quite so straightforward. Grid
A in domain 1 can now be swept both from the lower left and from the upper right.
However, grid B in domain 2 can be swept only from the upper left. (It cannot be swept
from the lower right because grid D has not yet been swept in that direction.) Likewise,
only grid C in domain 3 can be swept from the upper left, whereas E, then D, and then C
can all be swept from the lower right. In domain 4, grid G and then F can be swept from
the upper right, and in the opposite order from the lower left. These and the remaining
sub-iterations giving the complete set of sweeps for a single iteration are listed in Table 2.
We have assigned arbitrary time units to each grid so that the total for each domain is one
unit.

Processors
and Domains→

Processors 1 and 2
Domain 1

Processors 3 and 4
Domain 2

Processors 5 and 6
Domain 3

Processors 7 and 8
Domain 4

Grid Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time
Sub-iteration

C .25 G .50

E .25 F
lr→ul

.50

1

A

ul→lr

1.00

B

ur→ll

1.00

D

 ll→ur

.50
C ul→lr .25 F .50

A ur→ll 1.00
E .25 G

ll→ur
.50

D .50 G .50

2

A ll→ur 1.00

B

ul→lr

1.00

C

lr→ul

.25 F
ur→ll

.50
D .50

B lr→ul 1.00
E

 ur→ll
.25

D .50

3

(idle)
 B ll→ur 1.00

E
ul→lr

.25

(idle)

F .50
4 A lr→ul 1.00 (idle) C ur→ll .25

G
ul→lr

.50
Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right

Table 2. Order of computations for “do everything immediately” strategy

It is clear from a glance at Table 2 that the strategy of doing all computation possible on
every sub-iteration is far from optimal. First we see that different processors do
comparable work only in the first sub-iteration. After that we find great asymmetry and
idled processors. In order to quantify this imbalance we can take the maximum time for
any processor on a sub-iteration as the time required to complete that sub-iteration across
all processors (at which point they exchange messages). What we see from the table is
that the four sub-iterations take (1, 2, 2, 1) time units, respectively. This gives an overall
time of 6 units (where we ignore communication time among the processors). Let us now
take another approach and show how we can obtain far different efficiencies by a
different scheduling of computations for the same problem. Table 3 gives the result.

 7

Processors

and Domains→
Processors 1 and 2

Domain 1
Processors 3 and 4

Domain 2
Processors 5 and 6

Domain 3
Processors 7 and 8

Domain 4

Grid Sweep Time Grid Sweep Time Grid Sweep Time Grid Sweep Time
Sub-iteration

C .25 G .50

E .25 F
lr→ul

.50

1

A

ul→lr

1.00

B

ur→ll

1.00

D

 ll→ur

.50
E .25 F .50
D .50 G

ll→ur
.50

2

A

ur→ll

1.00

B

ul→lr

1.00

C

lr→ul

.25
C .25 G .50
D .50 F

ur→ll
.50

3

A

ll→ur

 1.00

B

lr→ul

1.00

E

ul→lr

.25
D .50 F .50
E .25 G

ul→lr
.50

4

A

lr→ul

 1.00

B

ll→ur

1.00

C

ur→ll

.25
Note: ul = upper left, ur = upper right, ll = lower left, lr = lower right

Table 3. Order of computations for optimized strategy

Now we find a completely different situation in comparison with Table 2. We see in
particular that each processor does one unit of work on each sub-iteration. Thus the
overall time has been reduced from 6 units to 4 for the complete iteration, a savings of
50%. Furthermore we see that all the grids of a domain are swept in each sub-iteration, a
situation that does not always hold in Table 2. This was possible because (1) we had
precisely four domains, (2) the space was partitioned equally among the domains in
advance, and (3) there existed dependency relationships among the domains that
permitted this unique distribution of effort among the sub-iterations. Note that by
sweeping all the grids in a domain in only one direction per sub-iteration, we need not be
concerned about the internal structure of the domain, but can treat each domain as
essentially one super-grid. Then our precedence rules (such as those illustrated in Fig. 4)
become greatly simplified. (There is a practical consideration here as well, in that we
must perform the domain decomposition before the stage of adaptive mesh refinement is
begun. This means that we do not know where the grid boundaries will lie at the time of
the decomposition. Thus we wish to avoid coupling the internal grid structure of the
domains to our decomposition strategy.)

The approach described above forms one of the cornerstones of AMTRAN’s domain
decomposition strategy, which covers not only the simplest possible case examined in the
preceding paragraphs, but up to 512 domains in three dimensions. In order to accomplish
this task AMTRAN internally maintains tables which drive the domain decomposition
procedure on problem initialization, and additional corresponding tables of scripts for
deciding which angles to sweep on each sub-iteration as well. Each handles a fixed
number of domains (as requested by the code user) in either two or three dimensions.
This strict regime reduces the number of possible cases that we need to analyze and
guarantees uniformity of behavior within the code.

4. Outline of the Decomposition Algorithm

We have now provided the motivation for our spatial decomposition strategy, which we
now give in greater detail and generality. We have found it useful so far to support 4, 8,
or 16 domains in two dimensions, and 8, 16, 32, 64, 128, 256, or 512 domains in three.

 8

The reason that we support only powers of two in this way is that they permit the most
efficient exploitation of the parallel computational environment available to us. Our
partition algorithm is simple and rigid. We make a fixed number of binary partitions
along one axis, then for each subdivided region we make binary partitions along a second
axis, and then in the case of three dimensions along the remaining axis. A weighting
scheme that estimates the amount of work to be performed in each part of the problem is
the driver behind the initial set of partitions. (As stated earlier, we can later rebalance the
problem dynamically stepwise after each partition in case the initial approximation is not
adequate in terms of load balance.) The choice of which Cartesian axis is used in each set
of partitions depends upon the presence or absence of symmetry planes along each axis
and is beyond the scope of this discussion. Table 4 gives the binary decomposition
specifications that AMTRAN uses for each configuration of domains.

Number of
Dimensions

Number of
Domains

Number of Regions Partitioned along
Axis 1 Axis 2 Axis 3

2 4 2 2
2 8 2 4
2 16 4 4
3 8 2 2 2
3 16 2 2 4
3 32 2 4 4
3 64 4 4 4
3 128 8 4 4
3 256 8 8 4
3 512 8 8 8

Table 4. Order and degree of partitioning according to number of domains

With the binary partition scheme above we can now name our domains by their
coordinates along each partition axis, and dispense with the individual numbers used
earlier. By way of illustration, the sample problem of Fig. 3 was partitioned first along
the y-axis into what will become domains 1 and 2 on top and domains 3 and 4 on the
bottom. Then we separately partition the upper domain into 1 and 2 and the lower into 3
and 4. So in the new domain coordinate numbering system domain 1 becomes domain
(1,1), domain 2 becomes domain (1,2), domain 3 becomes domain (2,1), and finally
domain 4 becomes domain (2,2). We will use this latter numbering in the remainder of
our examples.

We now want to formalize our criteria for sweeping domains monolithically as in Table 3
above. Note there that in the first two sub-iterations, the upper two domains exchanged
sweep directions, and the lower two did likewise. Then in the last two sub-iterations, the
upper two domains swapped the pattern of the first two sub-iterations with the lower two
domains. This is in fact the only pattern of sweeps which can give the optimal
performance and illustrates the fact that sweeps directions are exchanged among domains
according to the inverse order of partitioning. We can alternatively view this as exchange
first between nearest neighbors on the binary partition tree, then among progressively
more distant branches on that tree. (We will expand on this topic with more examples in
the next section.) The second criterion for monolithic sweeping of domains, as we have
already mentioned in earlier discussion, is to sweep only in one “direction” per domain
per sub-iteration, where “direction” in our terminology means all angles lying in a given

 9

octant (or quadrant in 2D). We can now introduce the third and final criterion, which we
will call the “adjacency” criterion. This is that domains which share a common boundary
can have domain coordinates which differ by no more than one in any axis. It guarantees
that the prerequisite sweeps have already been performed for each domain’s neighbors in
time for it to perform its own sweeps. In Fig. 5 we contrast decompositions which both
pass and fail this criterion. In the one on the left adjacent domains have coordinates
which differ by no more that one in either axis, whereas on the right we have shifted the
partitions slightly. Now domain (2,1) shares a boundary with domain (1,3), and domain
(4,2) shares a boundary with domain (3,4). In both cases the second coordinates differ by
two, violating the adjacency criterion.

 (4,1) (4,2) (4,3) (4,4) (4,1) (4,2) (4,3) (4,4)

 (3,1) (3,2) (3,3) (3,4) (3,1) (3,2) (3,3) (3,4)

 (2,1) (2,2) (2,3) (2,4) (2,1) (2,2) (2,3) (2,4)

 (1,1) (1,2) (1,3) (1,4) (1,1) (1,2) (1,3) (1,4)

 passes adjacency criterion fails adjacency criterion

 Figure 5. A comparison of domain adjacency in two decompositions

Before we go into more detail on sweeps and their relationship to domain partitioning, it
will be useful to introduce some additional notation.

5. Representing Sweeps and Sweep Directions

We will now introduce a numerical notation for sweep directions and introduce three-
dimensional sweeps. Table 5 gives the correspondence.

Sweep
Direction

Number of
Dimensions Interpretation

0 2 lower left to upper right
1 2 lower right to upper left
2 2 upper left to lower right
3 2 upper right to lower left

0 3 lower left front to upper right back
1 3 lower right front to upper left back
2 3 lower left back to upper right front
3 3 lower right back to upper left front
4 3 upper left front to lower right back
5 3 upper right front to lower left back
6 3 upper left back to lower right front
7 3 upper right back to lower left front

 Table 5. Numerical representation of sweep directions

We can use the numerical sweep direction values in a schematic representation of sweeps
in a diagram representing those for 16 domains in a four-by-four two-dimensional
problem. Fig. 6 shows how we might give a more abstract representation of a problem

 10

such as that shown in Fig. 5. We do not assume in Fig. 6 that all the domain boundaries
necessarily align, but merely want a general representation for all four-by-four problems
that satisfy our sweep criteria of section 4 above. Ten sub-iterations are represented.

 2 3 2 3 3 2 3 2

 2 3 2 3 0 3 2 1

 0 1 0 1 2 1 0 3

 0 1 0 1 1 0 1 0

 Sub-iteration 1 Sub-iteration 2 Sub-iteration 3 Sub-iteration 4 Sub-iteration 5

 0 1 0 1 1 0 1 0

 3 0 1 2 1 0 1 0

 1 2 3 0 3 2 3 2

 2 3 2 3 3 2 3 2

 Sub-iteration 6 Sub-iteration 7 Sub-iteration 8 Sub-iteration 9 Sub-iteration 10

Figure 6. Sweep pattern for 16 domains in two dimensions

Referring back to Fig. 5, we can see why the adjacency criterion must hold in order for
the pattern of Fig. 6 to work. For the set of domains on the right side of Fig. 5 we are
blocked at sub-iteration 3 from performing the sweep in the 0 direction for domain (2,1).
This is because domain (1,3) needs to have already been swept in direction 0 (and not
merely be in the process of being swept as shown in the pattern) for (2,1) to be swept at
sub-iteration 3. For the set of domains on the left side of Fig. 5, the sweep patterns of Fig.
6 work properly as expected.

Let us now consider some efficiency issues concerning the sweep patterns of Fig. 6. We
notice that each domain is swept only four times out of ten sub-iterations for an
efficiency rate of only 40%. However, we can double the efficiency to 80% by noticing
that domains separated by two units vertically are never both swept in the same sub-
iteration. So we can perform domain overloading and place these pairs of domains on
single masters. For example, domains (1,1) and (3,1) are paired together, (2,1) and (4,1)
are paired together, and so on. Thus master 1 will be busy with domain (1,1) in sub-
iteration 1, domain (3,1) in sub-iteration 3, domain (1,1) again in sub-iteration 4 again,
and so forth. We will find domain overloading to be essential to achieving maximal
efficiencies as we move toward higher numbers of domains as well. Note that 100%
theoretical efficiencies are possible only for four domains in two dimensions and eight
domains in three dimensions because otherwise (with more domains than sweep
directions) at least the initial and final sub-iterations must necessarily idle some
processors.

In order to represent sweep patterns more compactly, we can use a chart form as shown
in Table 6. It gives the sweep pattern of Fig. 6 both without and with domain
overloading.

 11

Master Domain Sub-iteration Master Domains Sub-iteration

(without domain overloading) (with domain overloading)
 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
 Sweep Directions Sweep Directions
1 (1,1) 0 1 2 3 1 (1,1),(3,1) 0 2 1 0 3 2 1 3
2 (1,2) 0 1 2 3 2 (1,2),(3,2) 0 1 2 3 0 1 2 3
3 (1,3) 1 0 3 2 3 (1,3),(3,3) 1 0 3 2 1 0 3 2
4 (1,4) 1 0 3 2 4 (1,4),(3,4) 1 3 0 1 2 3 0 2
5 (2,1) 0 2 1 3 5 (2,1),(4,1) 2 0 3 2 1 0 3 1
6 (2,2) 0 1 2 3 6 (2,2),(4,2) 2 3 0 1 2 3 0 1
7 (2,3) 1 0 3 2 7 (2,3),(4,3) 3 2 1 0 3 2 1 0
8 (2,4) 1 3 0 2 8 (2,4),(4,4) 3 1 2 3 0 1 2 0
9 (3,1) 2 0 3 1
10 (3,2) 2 3 0 1
11 (3,3) 3 2 1 0
12 (3,4) 3 1 2 0
13 (4,1) 2 3 0 1
14 (4,2) 2 3 0 1
15 (4,3) 3 2 1 0
16 (4,4) 3 2 1 0

Table 6. Sweep directions for a 4×4 set of domains

We can use this same technique of overloading for our first three-dimensional example,
namely, a 4×4×2 array of domains. The problem will consist of two layers, each swept in
much the same fashion as above. The schematic view of the first sub-iteration is shown in
Fig. 7, where heavy arrows are used to denote sweep directions. In addition, some of the
domains at the corners of the block have been labeled in order to show their numbering
scheme. The complete set of sweeps is given in numerical notation in Table 7. Note that
now each domain must be swept eight times instead of four times as in the two-
dimensional examples which preceded this one. This increases the number of sub-
iterations from 10 to 18. We have also shaded the upper left quadrant to highlight where
the pattern in the upper right of Table 6 has been replicated four times in Table 7.

 (2,4,1) (2,4,4)

 (2,1,1)

 (1,4,4)

 (1,1,1) (1,1,4)

Figure 7. Schematic view of 32 domains in a 4×4×2 configuration

 12

Master Domains Sub-iteration

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 Sweep Directions
1 (1,1,1),(1,3,1) 0 2 1 0 3 2 1 4 3 6 5 4 7 6 5 7
2 (1,1,2),(1,3,2) 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7
3 (1,1,3),(1,3,3) 1 0 3 2 1 0 3 2 5 4 7 6 5 4 7 6
4 (1,1,4),(1,3,4) 1 3 0 1 2 3 0 5 2 7 4 5 6 7 4 6
5 (1,2,1),(1,4,1) 2 0 3 2 1 0 3 6 1 4 7 6 5 4 7 5
6 (1,2,2),(1,4,2) 2 3 0 1 2 3 0 1 6 7 4 5 6 7 4 5
7 (1,2,3),(1,4,3) 3 2 1 0 3 2 1 0 7 6 5 4 7 6 5 4
8 (1,2,4),(1,4,4) 3 1 2 3 0 1 2 7 0 5 6 7 4 5 6 4
9 (2,1,1),(2,3,1) 4 6 5 4 7 6 5 0 7 2 1 0 3 2 1 3
10 (2,1,2),(2,3,2) 4 5 6 7 4 5 6 7 0 1 2 3 0 1 2 3
11 (2,1,3),(2,3,3) 5 4 7 6 5 4 7 6 1 0 3 2 1 0 3 2
12 (2,1,4),(2,3,4) 5 7 4 5 6 7 4 1 6 3 0 1 2 3 0 2
13 (2,2,1),(2,4,1) 6 4 7 6 5 4 7 2 5 0 3 2 1 0 3 1
14 (2,2,2),(2,4,2) 6 7 4 5 6 7 4 5 2 3 0 1 2 3 0 1
15 (2,2,3),(2,4,3) 7 6 5 4 7 6 5 4 3 2 1 0 3 2 1 0
16 (2,2,4),(2,4,4) 7 5 6 7 4 5 6 3 4 1 2 3 0 1 2 0

Table 7. Sweep directions for a 4×4×2 set of domains on 16 masters

We now wish to expand our scheme for domain overloading to larger numbers of
domains. In order to do this we need to examine more carefully the shaded sweep pattern
at the left of Table 6. When we compare it to the shaded pattern in Table 7, we can see
that the upper and lower halves of the former pattern have been merged by overlaying
one half on top of the other. Furthermore, to the right of the shaded pattern in Table 7 we
have placed the same pattern (the unshaded cells with italicized numerals) in an
interlocking fashion with the shaded area. This illustrates an interesting property of the
pattern that relates to tiling theory, namely, that the shaded pattern of Table 6 can
completely tile the plane if displaced in (positive or negative) multiples of 8 units in the
vertical and (positive or negative) multiples of 8 in the horizontal direction. That is,
copies of the pattern, if treated like the pieces of a jigsaw puzzle, can be placed together
to cover a planar surface infinitely in all directions. This replication scheme works not
only for modeling the sweeps of our 16 and 32 domain configurations, as already shown,
but for overloading higher numbers of domains onto sixteen masters as well. For
example, in order to place 64 domains on 16 masters we replicate the sweeps of Table 6
to the right, overlaying the copy of sub-iterations 1 and 2 on sub-iterations 17 and 18,
respectively, for a new total of 34=2×18-2 sub-iterations. Master 1 would have domains
{ (1,1,1),(1,3,1),(3,1,1),(3,3,1)} and master 9 would have { (2,1,1),(2,3,1),(4,1,1),(4,3,1)} ,
for example. We could similarly replicate patterns to go to 128 or 256 domains.

As we move up to 32 domain masters, this strategy is not applicable. Instead, we use
another tiling property of the shaded pattern of Table 6, namely, that it can also tile the
plane when displaced in (positive or negative) multiples of 16 units in the vertical and
(positive or negative) multiples of 4 in the horizontal direction. Replicating in this new
way, we can overload 64 domains onto 32 masters as shown in Table 8. Note the
difference in domain overloading between Tables 7 and 8. In the former, domains which
differ by two in the second coordinate are grouped on a master (i.e., within the sweep
plane), whereas in the latter they differ by two in the first coordinate (i.e., across two
sweep planes).

 13

Masters Domains Sub-iteration

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 Sweep Directions

 1 (1,1,1),(3,1,1) 0 1 4 2 5 0 3 6 1 4 7 2 5 3 6 7
 2 (1,1,2),(3,1,2) 0 1 4 5 2 3 0 1 6 7 4 5 2 3 6 7
 3 (1,1,3),(3,1,3) 1 0 5 4 3 2 1 0 7 6 5 4 3 2 7 6
 4 (1,1,4),(3,1,4) 1 0 5 3 4 1 2 7 0 5 6 3 4 2 7 6
 5 (1,2,1),(3,2,1) 0 2 1 4 3 6 5 0 7 2 1 4 3 6 5 7
 6 (1,2,2),(3,2,2) 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 7 (1,2,3),(3,2,3) 1 0 3 2 5 4 7 6 1 0 3 2 5 4 7 6
 8 (1,2,4),(3,2,4) 1 3 0 5 2 7 4 1 6 3 0 5 2 7 4 6
 9 (1,3,1),(3,3,1) 2 0 3 6 1 4 7 2 5 0 3 6 1 4 7 5
10 (1,3,2),(3,3,2) 2 3 0 1 6 7 4 5 2 3 0 1 6 7 4 5
11 (1,3,3),(3,3,3) 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4
12 (1,3,4),(3,3,4) 3 1 2 7 0 5 6 3 4 1 2 7 0 5 6 4
13 (1,4,1),(3,4,1) 2 3 6 0 7 2 1 4 3 6 5 0 7 1 4 5
14 (1,4,2),(3,4,2) 2 3 6 7 0 1 2 3 4 5 6 7 0 1 4 5
15 (1,4,3),(3,4,3) 3 2 7 6 1 0 3 2 5 4 7 6 1 0 5 4
16 (1,4,4),(3,4,4) 3 2 7 1 6 3 0 5 2 7 4 1 6 0 5 4
17 (2,1,1),(4,1,1) 4 5 0 6 1 4 7 2 5 0 3 6 1 7 2 3
18 (2,1,2),(4,1,2) 4 5 0 1 6 7 4 5 2 3 0 1 6 7 2 3
19 (2,1,3),(4,1,3) 5 4 1 0 7 6 5 4 3 2 1 0 7 6 3 2
20 (2,1,4),(4,1,4) 5 4 1 7 0 5 6 3 4 1 2 7 0 6 3 2
21 (2,2,1),(4,2,1) 4 6 5 0 7 2 1 4 3 6 5 0 7 2 3
22 (2,2,2),(4,2,2) 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3
23 (2,2,3),(4,2,3) 5 4 7 6 1 0 3 2 5 4 7 6 1 0 3 2
24 (2,2,4),(4,2,4) 5 7 4 1 6 3 0 5 2 7 4 1 6 3 0 2
25 (2,3,1),(4,3,1) 6 4 7 2 5 0 3 6 1 4 7 2 5 0 3 1
26 (2,3,2),(4,3,2) 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1
27 (2,3,3),(4,3,3) 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
28 (2,3,4),(4,3,4) 7 5 6 3 4 1 2 7 0 5 6 3 4 1 2 0
29 (2,4,1),(4,4,1) 6 7 2 4 3 6 5 0 7 2 1 4 3 5 0 1
30 (2,4,2),(4,4,2) 6 7 2 3 4 5 6 7 0 1 2 3 4 5 0 1
31 (2,4,3),(4,4,3) 7 6 3 2 5 4 7 6 1 0 3 2 5 4 1 0
32 (2,4,4),(4,4,4) 7 6 3 5 2 7 4 1 6 3 0 5 2 4 1 0

Table 8. Sweep directions for a 4×4×4 set of domains on 32 masters

As before with 16 masters, we can overload higher numbers of domains onto 32 masters
as well. For example, in order to place 128 domains on 32 masters we replicate the
sweeps of Table 8 to the right, overlaying the copy of sub-iterations 1 through 6 on sub-
iterations 17 through 22, respectively, for a new total of 38=2×22-6 sub-iterations. Master
1 would have domains { (1,1,1),(3,1,1),(5,1,1),(7,1,1)} and master 17 would have
{ (2,1,1),(4,1,1),(6,1,1),(8,1,1)} , for example. We can likewise go to 256 domains on 32
masters by further replication of the table.

So far we have dealt with a single tile corresponding to 4×4 arrangement of domains,
replicated in various ways in both two and three dimensions. For larger domain
configurations considered here we need to consider tiles corresponding to 4×8, 8×8, and
16×16 configurations (replicated in various ways) in order to generate all the entries in
Table 9 below. They are basically elaborations of the same scheme as above and so will
not be shown explicitly here.

6. Efficiency Comparisons for Various Domain Configurations

We can now summarize the various configurations of domains and masters that we
studied in the previous section. Table 9 contains these results, plus some that were not

 14

covered earlier. Again, these are theoretical results assuming perfect load balancing and
no overhead or communications cost. It is clear from this table that domain overloading is
preferable whenever we have more than 4 domains in two dimensions or 8 domains in
three. The asymptotic effect of overloading domains on masters is apparent also in going
from 1 to 2 to 4 to 8 domains per master on 16 domains (with efficiencies of 80, 89, 94,
and 97 percent respectively). On 32 masters the same overloading produces efficiencies
of 57, 73, 84, and 91 percent, respectively. Likewise, for 64 masters we have efficiencies
of 36, 61, 76, and 86 percent, respectively. This is shown graphically in Fig. 8.

Dimensions Masters Domains Domains per

Master
Active

Sub-iterations
Total

Sub-iterations
Percent

Efficiency

2 4 4 1 4 4 100

2 8 8 1 4 6 67

2 8 16 2 8 10 80

2 16 16 1 4 10 40

3 8 8 1 8 8 100

3 16 16 1 8 10 80

3 16 32 2 16 18 89

3 16 64 4 32 34 94

3 16 128 8 64 66 97

3 16 256 16 128 130 98

3 16 512 32 256 258 99

3 32 32 1 8 14 57

3 32 64 2 16 22 73

3 32 128 4 32 38 84

3 32 256 8 64 70 91

3 32 512 16 128 134 96

3 64 64 1 8 22 36

3 64 128 2 16 26 61

3 64 256 4 32 42 76

3 64 512 8 64 74 86

3 128 512 4 32 50 64

3 128 1024 8 64 82 78

3 128 2048 16 128 146 88

3 128 4096 32 256 274 93

Table 9. Theoretical efficiency results for various configurations of domains

The important observation to be made from Fig. 8 is that for both 16 and 32 masters we
can adequately exploit our computational resources by domain overloading (with
progressively larger numbers of domains). Note that it is the number of masters, rather
that the number of domains, that determines the degree of parallelism overall, so that all
data points along a single curve represent the same level. As an example with, say 32
energy groups, 1024 processors can be used with 32 masters. Although 64 masters allow
for somewhat less exploitation of our resources, as can be seen from Table 9 and Fig. 8,
they permit us to use up to 2048 processors (again with 32 energy groups). The optional
use of threading increases these figures even more. The last entry in Table 9 corresponds
to a 16×16×16 decomposition of the problem space into 4096 domains, with 32 domains

 15

on each of 128 masters. With 32 energy groups and 4-way threading, we would use
16384 processors, a capacity to be reached within a few years.

Maximum theoretical processor usage for various domain configurations

32

64

64

512

512
256

32

128
64

16

512

128

256

128

256

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Total number of domains

P
er

ce
n

t
u

sa
g

e
p

er
 p

ro
ce

ss
o

r

16 Masters

32 Masters

64 Masters

Figure 8. Graphical rendering of comparisons in Table 9

Actual timing figures for the above configurations agree fairly well with the predicted
efficiencies, except that there is some degradation of performance with higher numbers of
domains due to the inevitable overhead and communication costs. Nevertheless, we are
able to exploit the massively parallel hardware rather well, and scaling studies have
showed improved overall performance as problems are progressively doubled in size to
eight times their original size. At 32 masters and 3000 processors we have not yet found
in practice the point where scaling up a problem becomes counterproductive. Our
principal limitation at the moment is the availability of computing nodes rather than our
ability to exploit them effectively.

An example illustrating the effectiveness of domain overloading is given in Table 10
below. It shows that the theoretical efficiencies of Table 9 for 16 masters are in fact
achieved in practice. This is an s8 problem with 32 energy groups. It has fourfold
symmetry about one axis, and thus is a good candidate for good load balancing. We see
from Table 10 that the product of the time and predicted theoretical efficiency is nearly
constant as expected, and corresponds to a computation time of approximately 1200
seconds in the limiting case of 100% efficiency. In problems with no such symmetry,
perfect load balancing is more difficult to achieve, and we can find that overall times
remain nearly constant in spite of increasing theoretical efficiency. Moreover, if we
attempt load balancing with too crude an overall mesh (thus resulting in few choices as to
where to place partitions during the decomposition phase), then resorting to larger
numbers of domains can be counterproductive. It follows that the opportunities for finer

 16

decomposition (and hence greater parallelism) occur when we model our problems with
more and finer grids overall.

Number of
masters

Number of
domains

Time (seconds) Theoretical
efficiency

 Efficiency × time

16 16 1440* .80 1150
16 32 1330* .89 1184
16 64 1272* .94 1196

* Due to the AMR nature of the code, slight variations in total zone count occurred between runs so these
times have been normalized to a constant zone count.

Table 10. Timing study for domain overloading efficiencies.

We can now return to a problem to which we alluded earlier in section (4), namely the
adjacency criterion as exemplified in Fig. 5. It turns out, occasionally, that our initial
binary spatial decomposition may result in a configuration which fails that criterion. In
such cases the question arises as to whether it would be better to abandon the scripting of
sweeps which we developed in section (5) in favor of the “do everything immediately”
algorithm illustrated in Table 2, or alternatively to adjust our domain boundaries to fit the
adjacency criterion at the expense of optimal load balancing. In fact, studies have been
performed to find out how this trade-off could affect overall performance. The result is
that satisfying the adjacency criterion is more important than optimizing the balance of
work among the processors. This is explained immediately below by considering what
sorts of bottlenecks are imposed by each strategy.

In any load-balancing scheme, it is the processor with the maximum amount of work
which delays all the other processors. So if we assure that our busiest processors have
roughly the same amount of work, with a few outliers that may fall well below this range,
then we can count this nonetheless as a successful decomposition. This is because the
average amount of work per unit time is the average over all processors, with the outliers
contributing only slightly to the degradation in overall performance. Thus if we keep the
adjacency criterion intact by adjusting our domain boundaries so as to create a few
“underperforming” domains, then we can achieve nearly optimal performance. On the
other hand, by abandoning our careful scheduling of sweeps as developed in section (5),
then we introduce global conflicts as shown in Table 2, which can lead to the idling of
large numbers of processors. This has been demonstrated in numerous tests which have
pitted various optimization schemes against each other.

We mentioned earlier that dynamic load balancing could be performed at each iteration in
case our initial estimate of the load (made before the adaptive mesh refinement step) was
not optimal. It turns out that this is more important in the case of fewer domains
(especially 4 in 2D and 8 in 3D). In those cases imbalances are more noticeable because
we have fewer processors to average out the outliers discussed in the paragraph above.
For large numbers of domains we reach a point of diminishing returns, and the initial
domain decompositions turn out to be close to optimal. Attempts to improve on our
automatic decomposition have verified our basic method in the sense that performing

 17

careful decomposition by inspection and human intervention do not achieve any
significant improvements.

7. Acknowledgements

This work was performed under the auspices of the United States Department of Energy
by the University of California, Lawrence Livermore National Laboratory under Contract
Number W-7405-ENG-48.

8. References

[1] See http://www.llnl.gov/asci.

[2] See http://www.llnl.gov/asci/platforms/white.

[3] G. E. Sjoden and A. Haghighat, “Pentran: A Three-Dimensional Scalable Transport
Code with Complete Phase-Space Decomposition,” Trans. Am. Nucl. Soc., Vol. 74, 181
(1996).

[4] C. Aussourd, “An Adapted DSN Scheme for Solving the Two-Dimensional Neutron
Transport Equation on a Structured AMR Grid,” Proc. Int. Conf. Mathematical Methods
and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5-
9, 1997, Vol. 1, p. 41, American Nuclear Society (1997).

[5] M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock
Hydrodynamics,” Journal of Computational Physics, Vol. 82, No. 1, pp. 64-84 (1989).

[6] C. Aussourd, “Styx: A Multidimensional AMR Sn Scheme,” Nuc. Sci. and Eng., Vol.
143, pp. 281-290 (2003).

